
KSSOLV - A MATLAB Toolbox for Solving the

Kohn-Sham Equations

Chao Yang and Juan C. Meza and Byounghak Lee and Lin-Wang Wang

We describe the design and implementation of KSSOLV, a MATLAB toolbox for solving a class of
nonlinear eigenvalue problems known as the Kohn-Sham equations. These types of problems arise
in electronic structure calculations, which are nowadays essential for studying the microscopic
quantum mechanical properties of molecules, solids and other nanoscale materials. KSSOLV is
well suited for developing new algorithms for solving the Kohn-Sham equations and is designed
to enable researchers in computational and applied mathematics to investigate the convergence
properties of the existing algorithms. The toolbox makes use of the object-oriented programming
features available in MATLAB so that the process of setting up a physical system is straightfor-
ward and the amount of coding effort required to prototype, test and compare new algorithms
is significantly reduced. All of these features should also make this package attractive to other
computational scientists and students who wish to study small to medium size systems.

Categories and Subject Descriptors: G.1.10 [Numerical Analysis]: Applications – Electronic
Structure Calculation; G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.1.6 [Numer-

ical Analysis]: Optimization; G. 4. [Mathematics of Computing]: Mathematical Software-
Algorithm Design and Analysis

General Terms: nonlinear eigenvalue problem, density functional theory (DFT), Kohn-Sham equa-
tions, self-consistent field iteration (SCF), direct constrained minimization (DCM)

Additional Key Words and Phrases: planewave discretization, pseudopotential

1. INTRODUCTION

KSSOLV is a MATLAB toolbox for solving a class of nonlinear eigenvalue problems
known as the Kohn-Sham equations. These types of problems arise in electronic
structure calculations, which are nowadays essential for studying the microscopic
quantum mechanical properties of molecules, solids and other nanoscale materials.
Of the many approaches for studying the electronic structure of molecular systems,
methods based on Density Functional Theory (DFT) [Hohenberg and Kohn 1964]
have been shown to be among the most successful. Through the DFT formalism,
one can reduce the many-body Schrödinger equation used to describe the electron-
electron and electron-nucleus interactions to a set of single-electron equations that
have far fewer degrees of freedom. These equations, which we will describe in more
detail in the next section, were first developed by W. Kohn and L. J. Sham [Kohn
and Sham 1965]. Discretizing the single-electron equations results in a set of non-
linear equations that resemble algebraic eigenvalue problems presented in standard

...
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008, Pages 1–34.

2 · KSSOLV

linear algebra textbooks [Demmel 1997; Golub and Van Loan 1989; Trefethen and
Bau III 1997]. The main feature distinguishing the Kohn-Sham equations from the
standard linear eigenvalue problem is that the matrix operator in these equations is
a function of the eigenvectors that must be computed. For this reason, the problem
defined by the Kohn-Sham equations is more accurately described as a nonlinear
eigenvalue problem.

Due to the nonlinear coupling between the matrix operator and its eigenvectors,
the Kohn-Sham equations are more difficult to solve than standard linear eigenvalue
problems. Currently, the most widely used numerical method for solving this type
of problem is the Self Consistent Field (SCF) iteration, which we will examine in
detail in Section 3. The SCF iteration has been implemented in almost all quantum
chemistry and physics software packages. However, the mathematical convergence
properties of SCF are not yet fully understood; for example, it is well known that
the simplest form of SCF iteration often fails to converge to the correct solution
[Le Bris 2005]. Although a number of techniques have been developed by chemists
and physicists to improve the convergence of SCF, these methods are also not well
understood, and they can fail in practice as well.

Clearly, more work is needed to investigate the mathematical properties of the
Kohn-Sham equations, to rigorously analyze the convergence behavior of the SCF
iteration, and to develop improved numerical methods that are both reliable and
efficient. Some progress has recently been made in this direction [Le Bris 2005;
Cancès and Le Bris 2000b; Cancès 2001]. However, many efforts have been ham-
pered within the larger applied mathematics community by the lack of mathemat-
ical software tools that one can use to quickly grasp the numerical properties of
the Kohn-Sham equations and to perform simple computational experiments on
realistic systems.

The lack of such software tools also makes it difficult to introduce basic DFT
concepts and algorithms into numerical analysis courses, even though these ideas
are relatively well developed in computational chemistry and physics curricula. Al-
though a number of well designed software packages are available for performing
DFT calculations on large molecules and bulk systems [Gonze et al. 2002; Baroni
et al. 2006; Kresse and Furthmüller 1996; Kronik et al. 2006; Andreoni and Curioni
2000; Wang 2008; Shao et al. 2006], it is often a daunting task for researchers and
students with a minimal physics or chemistry background to delve into these codes
to extract mathematical relations from various pieces of the software. Furthermore,
because these codes are usually designed to handle large systems efficiently on paral-
lel computers, the data structures employed to encode basic mathematical objects
such as vectors and matrices are often sophisticated and difficult to understand.
Consequently, standard numerical operations such as fast Fourier transforms, nu-
merical quadrature calculations, and matrix vector multiplications become non-
transparent, making it difficult for a computational mathematician to develop and
test new ideas in such an environment.

The KSSOLV toolbox we developed provides a tool that will enable computa-
tional mathematicians and scientists to study properties of the Kohn-Sham equa-
tions by rapidly prototyping new algorithms and performing computational experi-
ments more easily. It will also allow them to develop and compare numerical meth-

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 3

ods for solving these types of problems in a user friendly environment. One of the
main features of KSSOLV is its objected-oriented design, which allows users with a
minimal physics or chemistry background to assemble a realistic atomistic system
quickly. The toolbox also allows developers to easily manipulate wavefunctions and
Hamiltonians within a more familiar linear algebra framework.

We will present the main features and capabilities of KSSOLV in this paper. Since
KSSOLV is targeted primarily towards users who are interested in the numerical
analysis aspects of electronic structure calculations, our focus will be on numerical
algorithms and how they can be easily prototyped within KSSOLV. We provide
some background information on the Kohn-Sham equations and their properties in
Section 2. Numerical methods for solving these types of problems are discussed in
Section 3 along with some of the difficulties one may encounter. We then describe
the design features and the implementation details of KSSOLV in Section 4. In
Section 5, we illustrate how an algorithm for solving the Kohn-Sham equations
can be easily implemented in KSSOLV. Several examples are provided in Section 6
to demonstrate how KSSOLV can be used to study the convergence behavior of
different algorithms and visualize the computed results. Throughout this paper,
we will use ‖ ·‖ to denote the 2-norm of a vector, and ‖ ·‖F to denote the Frobenius
norm of a matrix.

2. KOHN-SHAM ENERGY MINIMIZATION

Properties of molecules, solids and other nanoscale materials are largely determined
by the interactions among electrons in the outer shells of their atomic constituents.
These interactions can be characterized quantitatively by the electron density, which
can be viewed as a multi-dimensional probability distribution. The electron density
of a many-atom system can be obtained by solving the well known many-body
Schrödinger equation

HΨ(r1, r2, ..., rne
) = λΨ(r1, r2, ..., rne

). (1)

Here Ψ(r1, r2, ..., rne
) (ri ∈ R3 and ne is the number of electrons) is a many-body

wavefunction whose magnitude squared characterizes an electronic configuration in
a probabilistic sense, i.e., |Ψ(r1, r2, ..., rne

)|2dr1dr2 · · ·drne
represents the probabil-

ity of finding electron 1 in a small volume around r1, electron 2 in a small volume
around r2 etc., and

∫

Ω

Ψ∗ΨdΩ = 1, (2)

where Ω = Ω1×Ω2 · · ·Ωne
, and Ωi ⊆ R3. Furthermore, the wavefunction must also

obey the antisymmetry principle, defined by

Ψ(r1, ..., ri, ..., rk, ..., rne
) = −Ψ(r1, ..., rk, ..., ri, ..., rne

). (3)

The differential operator H is a many-body Hamiltonian that relates the electronic
configuration to the energy of the system. When appropriate boundary conditions
are imposed, the energy must be quantized and is denoted here by λ ∈ R.

Using the Born-Oppenheimer approximation, which is to say that we assume the
positions of the nuclei r̂j , j = 1, 2, ..., nu, are fixed, where nu denotes the number

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

4 · KSSOLV

of nuclei, the many-electron Hamiltonian H can be defined (in atomic units) by

H = −1

2

ne
∑

i=1

∆ri
−

nu
∑

j=1

ne
∑

i=1

zj

||ri − r̂j ||
+

∑

1≤i,j≤ne

1

||ri − rj ||
, (4)

where ∆ri
is the Laplacian operator associated with the ith electron, and zj is the

charge of the jth nucleus.
Equation (1) is clearly an eigenvalue problem. In many cases, we are interested in

the eigenfunction Ψ associated with the smallest eigenvalue λ1, which corresponds
to the minimum (ground state) of the total energy functional

Etotal(Ψ) =

∫

Ω

Ψ∗HΨ dΩ, (5)

subject to the normalization and antisymmetry constraints (2) and (3). For atoms
and small molecules that consist of a few electrons (less than three), we can dis-
cretize (1) and solve the eigenvalue problem directly. However, as ne increases, the
number of degrees of freedom in (1), after it is discretized, increases exponentially
making the problem computationally intractable. For example, if ri is discretized
on an m×m×m grid, the dimension of H is n = m3ne . For m = 32 and ne = 5,
n is greater than 3.5 × 1022. Thus, it would be infeasible to solve the resulting
eigenvalue problem on even the most powerful computers available today.

To address the dimensionality curse, several approximation techniques have been
developed to decompose the many-body Schrödinger equation (1) into a set of
single-electron equations that are coupled through the electron density (defined
below). The most successful among these is based on Density Functional The-

ory [Hohenberg and Kohn 1964]. In their seminal work, Hohenberg and Kohn
proved that at the ground-state, the total energy of an electronic system can be
described completely by a function of the 3-D electron density

ρ(r) ≡ ne

∫

Ω\Ω1

|Ψ(r, r2, r3, ..., rne
)|2dr2dr3 · · · drne

.

Assuming all electrons are indistinguishable, the quantity ρ(r)dr/ne gives the prob-
ability of finding an electron within a small volume around r ∈ R3.

Unfortunately the proof given in [Hohenberg and Kohn 1964] is not constructive
and the analytical expression for this density-dependent total energy functional
is unknown. Subsequently, Kohn and Sham [Kohn and Sham 1965] proposed a
practical procedure to approximate the total energy by making use of single-electron
wavefunctions associated with a non-interacting reference system. Using this Kohn-
Sham model, the total energy (5) can be defined as

EKS
total =

1

2

ne
∑

i=1

∫

Ω

||∇ψi(r)||2dr +

∫

Ω

ρ(r)Vion(r)dr +

1

2

∫

Ω

∫

Ω

ρ(r)ρ(r′)

||r − r′|| drdr
′ + Exc(ρ), (6)

where ψi, i = 1, 2, ..., ne are the single-particle wavefunctions that satisfy the or-
thonormality constraint

∫

ψ∗
i ψj = δi,j , and Ω ⊂ R3. Here ρ(r) is the charge density

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 5

defined by

ρ(r) =

ne
∑

i=1

ψ∗
i (r)ψi(r). (7)

The function Vion(r) =
∑nu

j=1 zj/||r − r̂j || represents the ionic potential induced
by the nuclei, and Exc(ρ) is known as the exchange-correlation energy, which is
a correction term used to account for energy that the non-interacting reference
system fails to capture.

As the analytical form of Exc(ρ) is unknown, several approximations have been
derived semi-empirically [Perdew and Zunger 1981; Perdew and Wang 1992]. In
KSSOLV, we use the local density approximation (LDA) proposed in [Kohn and
Sham 1965]. In particular, Exc is expressed as

Exc(ρ) =

∫

Ω

ρ(r)ǫxc[ρ(r)]dr, (8)

where ǫxc(ρ) represents the exchange-correlation energy per particle in a uniform
electron gas of density ρ. The analytical expression of ǫxc used in KSSOLV is the
widely accepted formula developed in [Perdew and Zunger 1981]. To simplify the
presentation, we have ignored the spin degree of freedom in ψi(r), ρ(r) and Exc.
For some applications, it is important to include this extra degree of freedom which
gives the local spin-density approximation (LSDA) of Exc.

It is not difficult to show that the first order necessary condition (Euler-Lagrange
equation) for the constrained minimization problem

min EKS
total({ψi})

{ψi}
s.t ψ∗

i ψj = δi,j

(9)

has the form

H(ρ)ψi = λiψi, i = 1, 2, ..., ne, (10)

ψ∗
i ψj = δi,j . (11)

where the single-particle Hamiltonian H(ρ) (also known as the Kohn-Sham Hamil-
tonian) is defined by

H(ρ) = −1

2
∆ + Vion(r) + ρ(r) ⋆

1

||r|| + Vxc(ρ), (12)

where ⋆ denotes the convolution operator. The function Vxc(ρ) in (12) is the deriva-
tive of Exc(ρ) with respect to ρ. Because the Kohn-Sham Hamiltonian is a function
of ρ, which is in turn a function of {ψi}, the set of equations defined by (10) results
in a nonlinear eigenvalue problem. These equations are collectively referred to as
the Kohn-Sham equations. Interested readers can learn more about these equations
from several sources (e.g. [Nogueira et al. 2003]).

3. NUMERICAL METHODS

In this section, we will describe the numerical methods employed in KSSOLV to
obtain an approximate solution to the Kohn-Sham equations (10)-(11). We begin

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

6 · KSSOLV

by discussing the planewave discretization scheme that turns the continuous non-
linear problem into a finite-dimensional problem. The finite-dimensional problem is
expressed as a matrix problem in Section 3.2. We present two different approaches
to solving the matrix nonlinear eigenvalue problem in Sections 3.3 and 3.4. Both
of these approaches have been implemented in KSSOLV.

3.1 Planewave Discretization

To solve the minimization problem (9) or the Kohn-Sham equations numerically,
we must first discretize the continuous problem. Standard discretization schemes
such as finite difference, finite elements and other basis expansion (Ritz-Galerkin)
methods [Ritz 1908] all have been used in practice. The discretization scheme we
have implemented in the current version of KSSOLV is a Ritz type of method that
expresses a single electron wavefunction ψ(r) as a linear combination of planewaves

{e−igT
j r}, where gj ∈ R3 (j = 1, 2, ..., ng) are frequency vectors arranged in a

lexicographical order. The planewave basis is a natural choice for studying periodic
systems such as solids. It can also be applied to non-periodic structures (e.g.,
molecules) by embedding these structures in a fictitious supercell [Payne et al.
1992] that is periodically extended throughout an open domain. The use of the
planewave basis has the additional advantage of making various energy calculations
in density functional theory easy to implement. It is the most convenient choice for
developing and testing numerical algorithms for solving the Kohn-Sham equations
within the MATLAB environment, partly due to the availability of efficient fast
Fourier transform (FFT) functions.

It is natural to assume that the potential for R-periodic atomistic systems is a
periodic function with a period R ≡ (R1, R2, R3). Consequently, we can restrict
ourselves to one canonical period often referred to as the primitive cell and impose
periodic boundary conditions on the restricted problem. It follows from Bloch’s
theorem [Ashcroft and Mermin 1976; Bloch 1928] that eigenfunctions of the re-
stricted problem ψ(r) can be periodically extended to the entire domain (to form
the eigenfunction of the original Hamiltonian) by using the following formula:

ψ(r + R) = eikT Rψ(r), (13)

where k = (k1, k2, k3) is a frequency or wave vector that belongs to a primitive cell
in the reciprocal space (e.g., the first Brillouin zone (BZ) [Ashcroft and Mermin
1976]). If the R-periodic system spans the entire infinite open domain, the set of
k’s allowed in (13) forms a continuum in the first Brillouin zone. That is, each
ψ(r) generates an infinite number of eigenfunctions for the periodic structure. It
can be shown that the corresponding eigenvalues form a continuous cluster in the
spectrum of the original Hamiltonian [Ashcroft and Mermin 1976]. Such a cluster
is often referred to as an energy band in physics. Consequently, the complete set of
eigenvectors of H can be indexed by the band number i and the Brillouin frequency
vector k (often referred to as a k-point), i.e., ψi,k. In this case, the evaluation of
the charge density must first be performed at each k-point by replacing ψi(r) in (7)
with ψi,k to yield

ρk(r) =

ne
∑

i=1

|ψi,k(r)|2.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 7

The total charge density ρ(r) can then be obtained by integrating over k, i.e.,

ρ(r) =
|Ω|

(2π)3

∫

BZ

ρk(r)dk, (14)

where |Ω| denotes the volume of the primitive cell in the first Brillouin zone. Fur-
thermore, an integration with respect to k must also be performed for the kinetic
energy term in (6).

When the primitive cell (or supercell) in real space is sufficiently large, the first
Brillouin zone becomes so small that the integration with respect to k can be
approximated by a single k-point calculation in (6) and (14).

To simplify our exposition, we will, from this point on, assume that a large
primitive cell is chosen in the real space so that no integration with respect to k
is necessary. Hence we will drop the index k in the following discussion and use
ψ(r) to represent an R-periodic single particle wavefunction. The periodic nature
of ψ(r) implies that it can be represented (under some mild assumptions) by a
Fourier series, i.e.,

ψ(r) =
∞
∑

j=−∞

cje
igT

j r, (15)

where cj is a Fourier coefficient that can be computed from

cj =

∫ R/2

−R/2

ψ(r)e−igT
j rdr.

To solve the Kohn-Sham equations numerically, the Fourier series expansion (15)
must be truncated to allow a finite number of terms only. If all electrons are
treated equally, the number of terms required in (15) will be extremely large. This
is due to the observation that the strong interaction between a nucleus and the
inner electrons of an atom, which can be attributed to the presence of singularity
in Vion(r) at the the nuclei position r̂j , must be accounted for by high frequency
planewaves. However, because the inner electrons are held tightly to the nuclei, they
are not active in terms of chemical reactions, and they usually do not contribute to
chemical bonding or other types of interaction among different atoms. On the other
hand, the valence electrons (electrons in atomic orbits that are not completely filled)
can be represented by a relatively small number of low frequency planewaves. These
electrons are the most interesting ones to study because they are responsible for
a majority of the physical properties of the atomistic system. Hence, it is natural
to focus only on these valence electrons and treat the inner electrons as part of
an ionic core. An approximation scheme that formalizes this approach is called
the pseudopotential approximation [Phillips 1958; Phillips and Kleinman 1958; Yin
and Cohen 1982]. The details of pseudopotential construction and their theoretical
properties are beyond the scope of this paper. For the purpose of this paper, we
shall just keep in mind that the use of pseudopotentials allows us to

(1) remove the singularity in Vion;

(2) reduce the number of electrons ne in (6) and (7) to the number of valence
electrons;

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

8 · KSSOLV

(3) represent the wavefunction associated with a valence electron by a small number
of low frequency planewaves.

In practice, the exact number of terms used in (15) is determined by a kinetic
energy cutoff Ecut. Such a cutoff yields an approximation

ψ(r) =

ng
∑

j=1

cje
igT

j r, (16)

where ng is chosen such that

||gj ||2 < 2Ecut, (17)

for all j = 1, 2, . . . , ng. Although, the value of ng will depend on many parameters
such as the size and type of the system being studied, it is typically an order of
magnitude smaller than n = n1 × n2 × n3.

Once Ecut is chosen, the minimal number of samples of r along each Cartesian
coordinate direction (n1, n2, n3) required to represent ψ(r) (without the aliasing
effect) can be determined from the sampling theorem [Nyquist 1928]. That is, we
must choose nk (k = 1, 2, 3) sufficiently large so that

1

2

(

2πnk

Rk

)

> 2
√

2Ecut, (18)

is satisfied, i.e., nk must satisfy nk > 2Rk

√
2Ecut/π.

We will denote the uniformly sampled ψ(r) by a vector x ∈ R
n, where n = n1n2n3

and the Fourier coefficients cj in (16) by a vector c ∈ Cn with zero paddings used
to ensure the length of c matches that of x. If the elements of x and c are ordered
properly, these two vectors satisfy

c = Fx. (19)

where F ∈ Cn×n is a discrete Fourier transform matrix [Van Loan 1987].
After a sampling grid has been properly defined, the approximation to the to-

tal energy can be evaluated by replacing the integrals in (6) and (8) with simple
summations over the sampling grid.

The use of a planewave discretization makes it easy to evaluate the kinetic energy
of the system. Since

∇re
igT

j r = igje
igT

j r,

the first term in (6) can be computed as

1

2

ne
∑

ℓ=1

ng
∑

j=1

||gjc
(ℓ)
j ||2, (20)

where c
(ℓ)
j is the jth Fourier coefficient of the wavefunction associated with the ℓth

valence electron (denoted by xℓ). Here, one can take advantage of the orthogonality
properties of the planewave basis, which allows one to remove the integral from the
equation.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 9

3.2 Finite-Dimensional Kohn-Sham Problem

If we let X ≡ (x1, x2, ..., xne
) ∈ Cn×ne be a matrix that contains ne discretized

wavefunctions, the approximation to the kinetic energy (6) can also be expressed
by

Êkin =
1

2
trace(X∗LX), (21)

where L is a finite-dimensional representation of the Laplacian operator in the
planewave basis. Due to the periodic boundary condition imposed in our problem,
L is a block circulant matrix with circulant blocks that can be decomposed as

L = F ∗DgF, (22)

where F is the discrete Fourier transform matrix used in (19), and Dg is a diagonal
matrix with ||gj||2 on the diagonal [Davis 1979]. If follows from (19) and (22) that
(20) and (21) are equivalent.

In the planewave basis, the convolution that appears in the third term of (6)
may be viewed as the L−1ρ(X), where ρ(X) = diag(XX∗). (To simplify notation,
we will drop X in ρ(X) in the following.) However, since L is singular (due to the
periodic boundary condition), its inverse does not exist. Similar singularity issues
appear in the planewave representation of the pseudopotential and the calculation
of the ion-ion interaction energy. However, it can be shown that the net effects of
these singularities cancel out for a system that is electrically neutral [Ihm et al.
1979; Pickett 1989]. Thus, one can simply remove these singularities by replacing
L−1ρ with L†ρ, where L† is the pseudo-inverse of L defined as

L† = F ∗D†
gF,

where D†
g is a diagonal matrix whose diagonal entries (dj) are

dj =

{

||gj||−2 if gj 6= 0;
0 otherwise.

Consequently, the third term in (6), which corresponds to an approximation to the
Coulomb potential, can be evaluated as

Êcoul = ρTL†ρ = [Fρ]∗D†
g[Fρ],

However, removing these singularities results in a constant shift of the total energy,
for which a compensation must be made. It has been shown in [Ihm et al. 1979]
that this compensation can be calculated by adding a term Erep that measures the
degree of repulsiveness of the local pseudopotential with a term that corresponds
to the non-singular part of ion-ion potential energy. Because the second term can
be evaluated efficiently by using a technique originally developed by Ewald [Ewald
1921], it is denoted by EEwald. Both Erep and EEwald can be computed once and
for all in a DFT calculation. We will not go into further details of how they are
computed since they do not play any role in the algorithms we will examine in this
paper.

To summarize, the use of a planewave basis allows us to define a finite-dimensional

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

10 · KSSOLV

approximation to the total energy functional (6) as

Êtotal(X) = trace[X∗(
1

2
L+ V̂ion)X] +

1

2
ρTL†ρ+ ρT ǫxc(ρ) + EEwald + Erep, (23)

where V̂ion denotes the ionic pseudopotentials sampled on the suitably chosen Carte-
sian grid of size n1 × n2 × n3.

It is easy to verify that the KKT condition associated with the constrained min-
imization problem

min
X∗X=I

Êtotal(X) (24)

is

H(X)X −XΛne
= 0, (25)

X∗X = I,

where

H(X) =
1

2
L+ V̂ion + Diag(L†ρ) + Diag(µxc(ρ)), (26)

µxc(ρ) = dǫxc(ρ)/dρ, and Λne
is a ne × ne symmetric matrix of Lagrangian multi-

pliers. For simplicity, we will frequently denote the last three terms in (26) by

Vtot = V̂ion + Diag(L†ρ) + Diag(µxc(ρ)), (27)

Because Êtotal(X) = Êtotal(XQ) for any orthogonal matrix Q ∈ Cne×ne , we can
always choose a particular Q such that Λne

is diagonal. In this case, Λne
contains

ne eigenvalues of H(X). We are interested in the ne smallest eigenvalues and the
invariant subspace X associated with these eigenvalues.

3.3 The SCF Iteration

Currently, the most widely used algorithm for solving (25) is the self-consistent field
(SCF) iteration which we outline in Figure 1 for completeness.

SCF Iteration

Input: An initial guess of the wavefunction X(0) ∈ Cn×ne , pseudopotential;
Output: X ∈ Cn×ne such that X∗X = Ine and columns of X span the invariant

subspace associated with the smallest ne eigenvalues of H(X) defined in (26).

1. for k = 1, 2, ... until convergence

2. Form H(k) = H(X(k−1));

3. Compute X(k) such that H(k)X(k) = X(k)Λ(k), and Λ(k)

contains the ne smallest eigenvalues of H(k);
4. end for

Fig. 1. The SCF iteration

In [Yang et al. 2007], we viewed the SCF iteration as an indirect way to minimize
Êtotal through the minimization of a sequence of quadratic surrogate functions of

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 11

the form

q(X) =
1

2
trace(X∗H(k)X), (28)

on the manifold X∗X = Ine
. This constrained minimization problem is solved in

KSSOLV by running a small number of locally optimal preconditioned conjugate
gradient (LOBPCG) iterations [Knyazev 2001].

Since the surrogate functions share the same gradient with Êtotal at X(k), i.e.,

∇Êtotal(X)|X=X(k) = H(k)X(k) = ∇q(X)|X=X(k) ,

moving along a descent direction associated with q(X) is likely to produce a reduc-
tion in Êtotal. However, because gradient information is local, there is no guarantee
that the minimizer of q(X), which may be far from X(k), will yield a lower Êtotal

value. This observation partially explains why SCF often fails to converge. It also
suggests at least two ways to improve the convergence of SCF.

One possible improvement is to replace the simple gradient-matching surrogate
q(X) with another quadratic function whose minimizer is more likely to yield a
reduction in Êtotal. In practice, this alternative quadratic function is often con-
structed by replacing the charge density ρ(k) in (26) with a linear combination of
m previously computed charge densities, i.e.,

ρmix =

m−1
∑

j=0

αjρ
(k−j),

where a = (α0, α2, ..., αk−m+1) is chosen as the solution to the following minimiza-
tion problem:

min
aT e=1

‖Ra‖2 (29)

whereR = (∆ρ(k) ∆ρ(k−1) ... ∆ρ(m−1)),∆ρ(k) = ρ(k)−ρ(k−1) and e = (1, 1, . . . , 1)T .
This technique is often called charge mixing. The particular mixing scheme defined
by the solution to (29) is called Pulay mixing because it was first proposed by Pu-
lay for Hartree-Fock calculations [Pulay 1980; 1982]. (In computational chemistry,
Pulay mixing is referred to as the method of direct inversion of iterative subspace or
simply DIIS). Other mixing schemes include Kerker mixing [Kerker 1981], Thomas-

Fermi mixing [Raczkowski et al. 2001] and Broyden mixing [Kresse and Furthmüller
1996]. Charge mixing is often quite effective in practice for improving the conver-
gence SCF even though its convergence properties are still not well understood. In
some cases, charge mixing may fail also [Cancès and Le Bris 2000a; Yang et al.
2005].

Another way to improve the convergence of the SCF iteration is to impose an
additional constraint to the surrogate minimization problem (28) so that the wave-
function update can be restricted within a small neighborhood of the gradient
matching point X(k), thereby ensuring a reduction of the total energy function as
we minimize the surrogate function. In [Yang et al. 2007], we showed that the
following type of constraint

‖XX∗ −X(k)X(k)∗‖2F ≤ ∆,

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

12 · KSSOLV

where ∆ > 0 is a suitably chosen parameter, is preferred because it is rotationally
invariant (i.e., post-multiplying X by an unitary matrix does not change the con-
straint) and because adding such a constraint does not increase the complexity of
solving the surrogate minimization problem. It is not difficult to show [Yang et al.
2007] that solving the following constrained minimization problem,

min q(X)
XX∗ = I

‖XX∗ −X(k)X(k)∗‖2F ≤ ∆

(30)

is equivalent to solving a low rank perturbed linear eigenvalue problem
[

H(k) − σX(k)X(k)∗
]

X = XΛ, (31)

where σ can be viewed as the Lagrange multiplier for the inequality constraint in
(30), and Λ is a diagonal matrix that contains the ne smallest eigenvalues of the
low-rank perturbed matrix H(k). When σ is sufficiently large (which corresponds to
a trust region radius ∆ that is sufficiently small), the solution to (31) is guaranteed
to produce a reduction in Êtotal(X).

When ne is relatively small compared to n, the computational complexity of the
SCF iteration is dominated by the floating point operations carried out in the mul-
tiplications of H(k) with discretized wavefunctions in X . These multiplications are
performed repeatedly in an iterative method (e.g., the LOBPCG method or the
Lanczos method) used at Step 3 in Figure 1 to obtain an approximate minimizer
of (28). When a planewave expansion is used to represent X , each multiplication
requires the use of a 3-D FFT operation to convert the Fourier space representa-
tion of each column of X into the real space representation before multiplications
involving local potential terms in (27) can be carried out. An inverse 3-D FFT is
required to convert the product back to the Fourier space. The complexity of each
conversion is O(n logn). If m LOBPCG iterations are used on average to obtain
an approximate minimizer of (28), the total number 3-D FFTs required per SCF
iteration is 2mne. In addition, each SCF iteration also performs O(n · n2

e) basic
linear algebra (BLAS) operations. When ne becomes larger, these operations can
become a significant part of the computational cost.

The amount of memory required by the SCF iteration consists of 3ngne double
precision and complex arithmetic words that must be allocated to store the current
approximation to the desired wavefunctions, the gradient of the total energy, and
additional workspace required in the LOBPCG or Lanczos algorithm for eigenvector
calculations. An additional γn words are needed to store the various potential
components in the Hamiltonian, the charge density approximation ρ as well as
vectors that must be saved to perform charge mixing in (29), where the value of γ
is typically less than 20.

3.4 Direct Constrained Minimization

Instead of focusing on Kohn-Sham equations (25) and minimizing the total energy
indirectly in the SCF iteration, we can minimize the total energy directly in an
iterative procedure that involves finding a sequence of search directions along which
Êtotal(X) decreases and computing an appropriate step length. In most of the

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 13

earlier direct minimization methods developed in [Arias et al. 1992; Gillan 1989;
Kresse and Furthmüller 1996; Payne et al. 1992; Teter et al. 1989; VandeVondele
and Hutter 2003; Voorhis and Head-Gordon 2002], the search direction and step
length computations are carried out separately. This separation sometimes results
in slow convergence. We recently developed a new direct constrained minimization
(DCM) algorithm [Yang et al. 2005; 2007] in which the search direction and step
length are obtained simultaneously in each iteration by minimizing the total energy
within a subspace spanned by columns of

Y =

(

X(k),M−1R(k), P (k−1)

)

,

where X(k) is the approximation to X obtained at the kth iteration, R(k) =
H(k)X(k)−X(k)Λ(k), M is a Hermitian positive definite preconditioner, and P (k−1)

is the search direction obtained in the previous iteration. It was shown in [Yang
et al. 2005] that solving the subspace minimization problem is equivalent to comput-
ing the eigenvectors G associated with the ne smallest eigenvalues of the following
nonlinear eigenvalue problem

Ĥ(G)G = BGΩ, G∗BG = I, (32)

where

Ĥ(G) = Y ∗

[

1

2
L+ Vion + Diag

(

L†ρ(Y G)

)

+ Diag

(

µxc(ρ(Y G))

)]

Y, (33)

and B = Y ∗Y .
Because the dimension of Ĥ(G) is 3ne × 3ne, which is normally much smaller

than that of H(X), it is relatively easy to solve (32) by, for example, a trust region
enabled SCF (TRSCF) iteration. We should note that it is not necessary to solve
(32) to full accuracy in the early stage of the DCM algorithm because all we need
is a G that yields sufficient reduction in the objective function.

Once G is obtained, we can update the wave function by

X(k+1) ← Y G.

The search direction associated with this update is defined, using the MATLAB
submatrix notation, to be

P (k) ≡ Y (:, ne + 1 : 3ne)G(ne + 1 : 3ne, :).

A complete description of the constrained minimization algorithm is shown in Fig-
ure 2. We should point out that solving the projected optimization problem in
Step 7 of the algorithm requires us to evaluate the projected Hamiltonian Ĥ(G)
repeatedly as we search for the best G. However, since the first two terms of Ĥ do
not depend on G. They can be computed and stored in advance. Only the last two
terms of (33) need to be updated. These updates require the charge density, the
Coulomb and the exchange-correlation potentials to be recomputed.

In each DCM iteration, ne Hamiltonian-wavefunction multiplications are per-
formed to obtain the gradient. When an iterative method is used to solved the
projected nonlinear eigenvalue problem (32), the charge density ρ(Y G) and the
projected Hamiltonian must be updated repeatedly. The update of the projected

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

14 · KSSOLV

Algorithm: A Constrained Minimization Algorithm for Total Energy Minimization

Input: initial set of wave functions X(0) ∈ Cn×ne ; ionic pseudopotential; a precondi-
tioner M ;

Output:X ∈ Cn×k such that the Kohn-Sham total energy functional Etotal(X) is
minimized and X∗X = Ik.

1. Orthonormalize X(0) such that X(0)∗X(0) = Ik;
2. for k = 0, 1, 2, ... until convergence

3. Compute Θ = X(k)∗H(k)X(k);

4. Compute R = H(k)X(k) −X(k)Θ,
5. if (i > 1) then

Y ← (X(k), M−1R, P (k−1))
else

Y ← (X(k), M−1R);
endif

6. B ← Y ∗Y ;
7. Find G ∈ C2ne×ne or C3ne×ne that minimizes Etotal(Y G)

subject to the constraint G∗BG = Ine ;

8. Set X(k+1) = Y G;
9. if (i > 1) then

P (k) ← Y (:, ne + 1 : 3ne)G(ne + 1 : 3ne, :);
else

P (k) ← Y (:, ne + 1 : 2ne)G(ne + 1 : 2ne, :);
endif

10. end for

Fig. 2. A Direct Constrained Minimization Algorithm for Total Energy Minimization

Hartree potential requires us to compute L†ρ(Y G). This calculation makes use
of two 3-D FFTs, hence has a complexity of O(n log n). If m inner iterations are
taken in the DCM algorithm to solve the projected problem, the total number of
3-D FFTs used per DCM iteration is 2(ne +m). The memory requirement of the
DCM algorithm is similar to that of an SCF iteration.

4. THE OBJECT-ORIENTED DESIGN OF KSSOLV

Both the SCF iteration and the DCM algorithm have been implemented in the
KSSOLV toolbox, which is written entirely in MATLAB. It is designed to be mod-
ular, hierarchical, and extensible so that other algorithms can be easily developed
under the same framework. In addition to taking advantage of efficient linear al-
gebra operations and the 3-D fast Fourier transform (FFT) function available in
MATLAB, the toolbox also makes use of MATLAB’s object-oriented programming
(OOP) features. KSSOLV contains several predefined classes that can be easily
used to build a physical atomistic model in MATLAB and to construct numerical
objects associated with planewave discretized Kohn-Sham equations. These classes
are listed in Table I. The class names that appear in the first column of this table
are treated as keywords in KSSOLV. We will demonstrate how specific instances
of these classes (called objects) are created and used in KSSOLV. The internal
structure of these classes are explained in detail in [Yang 2007].

The use of the object-oriented design allows us to achieve two main objectives:

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 15

(1) Simplify the process of setting up a molecular or bulk system and converting
physical attributes of the system to numerical objects that users can work with
easily.

(2) Enable numerical analysts and computational scientists to easily develop, test
and compare different algorithms for solving the Kohn-Sham equation.

Class name Purpose

Atom Defines attributes of an atom
Molecule Defines attributes of a molecule or a basic cell of a periodic system
Hamilt Defines attributes of a Kohn-Sham Hamiltonian, e.g, potential
Wavefun Defines one or a set of wavefunctions
FreqMask Defines a mask used to filter high frequency components of a wavefunction

Table I. Classes defined in KSSOLV

In the following, we will illustrate how to define a molecular or bulk system in
KSSOLV by creating Atom and Molecule objects. We will then show how to set
up a Kohn-Sham Hamiltonian, which is represented as a Hamilt object, associ-
ated with a Molecule object. In KSSOLV, 3-D wavefunctions are represented as
Wavefun objects. Although each Wavefun object stores the Fourier coefficients of
a truncated planewave expansion of one or a few wavefunctions in a compact way,
it can be manipulated as either a vector or a matrix. Both the Hamilt and the
Wavefun objects are used extensively in the KSSOLV implementation of the SCF
and DCM algorithms. As we will see in the following, using these objects sig-
nificantly reduces the coding effort required to implement or prototype numerical
algorithms for solving the Kohn-Sham equations.

4.1 From Atoms to Molecules and Crystals

To solve the Kohn-Sham equations associated with a particular molecular or bulk
system in KSSOLV, we must first construct a Molecule object. Even though a
bulk system (such as a crystal) is physically different from a molecule, we currently
do not make such a distinction in KSSOLV. Both systems are considered periodic.
In the case of a molecule, the periodicity is introduced by placing the molecule in
a fictitious supercell that is periodically extended.

To construct a Molecule object, we use

mol = Molecule();

to first create an empty object called mol (a user-defined variable name). This call
simply sets up the required data structure that is used to describe attributes of
mol.

Before mol can be used in subsequent calculations, we must initialize all of its es-
sential attributes, which include the number and type of atoms in this molecule, the
size and shape of the supercell that contains the molecule, etc. All these attributes
can be defined by using the set method associated with the Molecule class. The
syntax of the set function is

mol = set(mol,attrname,attrvalue);

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

16 · KSSOLV

where the input argument attrname is a predefined string associated with the
Molecule class that gives the name of a particular attribute, and attrvalue is
a user supplied quantity that will be stored in mol. Table II lists the essential
attributes that must be defined before the mol object can be used in subsequent
calculations.

attribute name purpose value type

supercell the primitive or super cell that contains a 3× 3 matrix
the basic atomic constituents

atomlist list of atoms an array of Atom objects
xyzlist list of atomic coordinates an na × 3 matrix, where

na denotes the number of atoms
ecut kinetic energy cutoff used for a scalar

planewave discretization

Table II. Attributes to be set in a Molecule object

Each molecule consists of a number of atoms. An atom is defined as an Atom

object using the Atom constructor and a parameter that denotes either its chemical
symbol or its atomic number. For example

a = Atom(’Si’)

or

a = Atom(14)

defines a silicon atom object named a. The Atom constructor internally calculates
the number of valence electrons (ne) and retrieves the shell configuration through
a table lookup that finds the electron orbitals associated with each atom.

Atoms within a molecule can be placed in an array to form a list that is used to
specify the atomlist attribute of a Molecule object. For example, a silane molecule
contains one silicon (Si) atom and four hydrogen (H) atoms. After declaring both
the Si and H atoms through the commands

a1 = Atom(’Si’)

a2 = Atom(’H’)

we can form the atom list associated with this molecule by

alist = [a1; a2; a2; a2; a2].

The list can then be used to define the atomlist attribute of the mol object by

mol = set(mol,’atomlist’,alist).

To complete the description of the atomic configuration of a molecule, we must
also specify the spatial location of each atom. In KSSOLV, the 3-D coordinates
of the atoms can be placed in an na × 3 matrix and passed to a Molecule object
by setting the xyzlist attribute. For example, the atomic coordinates associated
with the atoms in SiH4 shown in Figure 3 is set by using

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 17

xyzmat = [0 0 0

1.61 1.61 1.61

-1.61 -1.61 1.61

1.61 -1.61 -1.61

-1.61 1.61 -1.61];

mol = set(mol,’xyzlist’,xyzmat).

Each row of the xyzmat array gives the (x, y, z) coordinates (in atomic/Bohr units)
of the corresponding atom in the alist array defined above. Care must be taken
in the input of these coordinates as KSSOLV does only a minimal checking for
physically reasonable coordinates.

In addition to physical properties of a molecule or bulk system, the definition
of a Molecule object in KSSOLV must also contain discretization information.
The two main attributes that affect the discretization of the molecular system are
the size and orientation of the supercell and the kinetic energy cutoff. Although
these attributes are not properties of the physical system, including them in the
Molecule class simplifies the construction of the Hamiltonian object and subsequent
calculations.

The supercell attribute defines the shape and size of the primitive or supercell
that contains the basic atomic constituents of a crystal or molecule. In KSSOLV,
the supercell is described by a 3 × 3 matrix. Each column of this matrix defines
the direction and length of one particular edge of the cell (or a translation vector)
emanating from the origin. For example,

mol = set(mol,’supercell’,10*eye(3));

sets the supercell of mol to a 10× 10× 10 cube (in atomic units) whose three edges
are parallel to the x, y and z axes respectively.

The attribute ecut is used to specify the kinetic energy cutoff that determines
the number of effective planewave basis functions (ng) and spatial sampling points
(n1, n2 and n3) used in the discretization. A higher cutoff energy leads to the use
of a larger number of planewave basis functions and more spatial sampling grid
points. This often yields a more accurate finite-dimensional approximation at the
expense of higher computational cost. The optimal energy cutoff will depend on
the molecular system being studied and the choice of pseudopotentials used in the
Hamiltonian.

Fig. 3. The relative positions of all atoms in the SiH4 molecule.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

18 · KSSOLV

4.2 The Hamiltonian Class

A properly defined Molecule object mol can be used to initialize the Kohn-Sham
Hamiltonian associated with this object. The initialization can be done by calling
the constructor

H = Hamilt(mol).

Although the Kohn-Sham Hamiltonian H(X) is treated as a matrix in equation
(25), it is not stored as a matrix in KSSOLV. Instead, the Hamilt class keeps L,
V̂ion and the total potential Vtot = V̂ion + Diag(L†ρ) + Diag(µxc(ρ)) as separate
attributes. This separation makes it easier to update the Hamiltonian in both the
SCF and the DCM calculations.

The kinetic component of a Hamilt object contains a compact representation
of the frequency vectors gj (j = 1, 2, ..., ng) that satisfy (17). These frequency
vectors correspond to the nonzero diagonal elements of Dg in (22). The compact
representation stores both the numerical values of ||gj ||2 and their (x, y, z) locations
in a full 3-D representation. High frequency vectors that do not meet the criterion
(17) are treated as zeros and never used when the kinetic component of the Kohn-
Sham Hamiltonian is applied to a wavefunction.

The ionic potential V̂ion contains a local term that is constructed and stored as a
3-D array at initialization. The nonlocal portion of V̂ion is a low rank linear opera-
tor. In the frequency space, it can be represented as WW ∗ for some ng×ℓ (ℓ≪ ng)
matrix W , where ℓ is total number of relevant atomic orbitals (i.e., s, p, d orbitals)
associated with all atoms in the molecule object. The construction of both the local
and nonlocal portions of the ionic potentials makes use of the numerical procedure
developed by Kleinman and Bylander [Kleinman and Bylander 1982] to sum up the
atomic pseudopotentials stored in the KSSOLV subdirectory Pseudopot. KSSOLV
provides Troullier-Martins [Troullier and Martins 1991] atomic pseudopotentials
associated with most elements in the first four rows of the periodic table as well as
a few commonly used elements in higher rows.

The determination of both the Coulomb and exchange correlation potential re-
quires the availability of the charge density ρ which is in turn a function of the
wavefunctions to be computed. Since a good approximation to the desired wave-
functions is not available at initialization, the initial ρ is computed in KSSOLV by
combining atomic charge densities associated with each atom in the mol object.

In addition to standard potentials that appear within the Kohn-Sham density
functional formalism, KSSOLV allows a user to specify other external potentials
that electrons may experience through the ’vext’ attribute of a Hamilt object. All
of these are stored internally as 3-D arrays.

Once a Hamilt object has been defined, one can retrieve various attributes of the
object through the get function, e.g.,

vt = get(H,’vtot’);

returns the total potential from a Hamilt object named H and assigns it to a user
defined variable vt. This potential, which is stored as a MATLAB 3-D array, can
be used and updated in a subsequent SCF or DCM calculation. An updated vt

can be passed back into H by using the set function

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 19

H = set(H,’vtot’,vt);

4.3 The Wavefunction Class

We created a special class Wavefun in KSSOLV to represent one or a set of wave-
functions. The creation of this class enables users to manipulate wavefunctions as if
they are vectors or matrices. Additionally, since by construction the wavefunctions
are represented by planewaves whose frequencies satisfy (17), we can use a compact
data structure to reduce the cost of performing linear algebra operations.

In KSSOLV, a Wavefun object can be constructed using either a noncompact
scheme or a compact scheme. In a noncompact representation, a Wavefun object X
can be constructed through the command

X = Wavefun(psi),

where psi is a MATLAB 3-D array if X represents a single wavefunction, or a cell
array that contains a list of 3-D arrays if X represents a set of wavefunctions.

Under the compact scheme, a Wavefun object stores only the nonzero Fourier ex-
pansion coefficients of a single wavefunction ψ(r) or a set of wavefunctions {ψi(r)}ne

i=1.
These coefficients are stored contiguously as a MATLAB cell array of size ng by
ne. Such a storage scheme makes linear algebra operations on X more efficient.
However, to perform 3-D FFT operations on X, we must place these coefficients in
a 3-D array. Hence, in the compact scheme, we must also record the locations of
these nonzero Fourier coefficients. Because the magnitude of each nonzero Fourier
coefficient is smaller than a cutoff frequency as determined from (17), these coef-
ficients lie within a sphere of a given radius in the 3-D Fourier space. In signal
processing, functions whose Fourier coefficients satisfy a constraint of the type (17)
are called bandlimited functions. In KSSOLV, the locations of the non-zero Fourier
coefficients is stored in a separate array which is labeled as the ’idxnz’ attribute
of the object. The ’n1’, ’n2’ and ’n3’ attributes, which gives the dimension of the
wavefunction in real space, must be properly set in this case before the object can
be used in subsequent calculation.

In the following section, we will see that all major matrix operations have been
overloaded for Wavefun objects for both the compact and noncompact schemes.
KSSOLV also provides a utility function genX0 that allows one to easily construct
initial Wavefun objects for the SCF or DCM calculations. To generate a set of
random bandlimited wavefunctions using the kinetic energy cutoff specified in a
Molecule object mol, one can simply use the command

X = genX0(mol).

Converting a Wavefun object X to a 3-D array (or a list of 3-D arrays) is straight-
forward when X is constructed using a noncompact scheme. The following command

X3D = get(X,’psi’)

returns the wavefunctions as a cell array X3D of 3-D arrays. Although rarely needed
when using KSSOLV, the following lines of codes show how the same conversion
can be accomplished for an X constructed using a compact representation scheme

n1 = get(X,’n1’);

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

20 · KSSOLV

n2 = get(X,’n2’);

n3 = get(X,’n3’);

psi = get(X,’psi’);

idx = get(X,’idxnz’);

X3D = zeros(n1,n2,n3);

X3D(idx) = psi{1}.

4.4 Operator Overloading

Because the Kohn-Sham Hamiltonian H(X) and wavefunction X are viewed as
matrices in (25), it is desirable to allow Hamilt and Wavefun objects to be manipu-
lated in KSSOLV as if they are matrices. This feature is made possible in KSSOLV
by overloading some basic algebraic operations for a Wavefun object. These over-
loaded operations are listed in Table III. One should be careful about the use of
some of these operators. For example, since the wavefunctions used in the SCF
and DCM calculation all have the same dimension, the multiplication operator *

is never used between two Wavefun objects except when the first Wavefun object
is transposed or conjugate transposed, i.e., it is valid to perform x’*y or x.’*y,
and the multiplication returns a standard MATLAB matrix object. The overloaded
multiplication operator * for Wavefun objects allows the second operand to be a
standard matrix object with proper dimension. The result of the multiplication is
a Wavefun object.

Operations Description

x + y Add two wavefunctions
x - y Subtract one wavefunction from another
x * y Multiply two wavefunctions and return a matrix
x * a Multiply several wavefunctions with a matrix
x .* y Element-wise multiplication of two wavefunctions
x . y Element-wise division of two wavefunctions
x’ Complex conjugate transpose of a wavefunction
x.’ Transpose of a wavefunction
[x y] Horizontal concatenation of several wavefunctions
x(:,i:j) Subscripted reference of wavefunctions

Table III. Overload operations for Wavefun objects in KSSOLV

The multiplication operator is also overloaded for the Hamilt class so that the
multiplication of a Hamilt object H and a Wavefun object X can be accomplished
in KSSOLV by a simple expression

Y = H*X,

which hides all the complexity of the operation from the user.

4.5 Solvers

KSSOLV provides implementations of both the SCF and DCM algorithms for solv-
ing the Kohn-Sham equations. It also contains an implementation of the LOBPCG
[Knyazev 2001] algorithm that can be used to compute a few of the smallest eigen-
values and the corresponding eigenvectors associated with a fixed Hamiltonian. The
names of these solvers and their functionality are briefly described in Table IV.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 21

Solver Description

scf.m An implementation of the SCF iteration with charge mixing.
dcm.m An implementation of the DCM algorithm without trust region.
trdcm1.m An implementation of a trust region enabled DCM algorithm with a fixed

trust region radius.
trdcm.m An implementation of a trust region enabled DCM algorithm with an adaptive

trust region radius.
lobpcg.m An implementation of the LOBPCG algorithm for computing approximations

to the smallest eigenvalues and the corresponding eigenvectors of a fixed
Hamiltonian. (It is used by scf.m)

lanczos.m A simple implementation of the Lanczos algorithm with full orthogonalization.
chebyscf.m A simple implementation of a polynomial filtered SCF iteration proposed in

[Bekas et al. 2005; Zhou et al. 2006].

Table IV. Solvers provided in KSSOLV

These solvers serve two purposes. First, they allow users to solve the Kohn-
Sham equations associated with different atomistic systems and observe how exist-
ing methods perform. In addition, they also provide templates for users to base
new algorithms on.

The simplest use of the scf and dcm functions are

[Etotvec, X, vtot, rho] = scf(mol)

[Etotvec, X, vtot, rho] = dcm(mol),

where mol is a Molecule object. Both of these functions return a vector of total
energy (Etotvec) values computed at each iteration, the final approximation to the
desired wavefunctions X, and the total potential vtot and charge density rho asso-
ciated with X. A number of optional parameters can be passed into these functions
to improve the efficiency of the computation or the quality of the solution. The
parameters used in scf are listed in Table V along with their default values. A
similar set of parameters for the dcm function can be found in the user’s guide [Yang
2007]. These parameters can be reset by passing a string-value pair as arguments
to the scf or dcm function. For example,

[Etotvec, X, vtot, rho] = scf(mol,’pulaymix’,’off’);

turns off the Pulay charge mixing scheme in the SCF iteration.

parameter name purpose default

maxscfiter the maximum of SCF iterations allowed 10
scftol the convergence tolerance for SCF 10−6

cgtol the convergence tolerance for the LOBPCG algorithm 10−6

used to solve the linear eigenvalue problem in SCF
maxcgiter the maximum number of LOBPCG iterations allowed 10
X0 the starting guess of the wavefunction random
pulaymix activation of the Pulay charge mixing ‘on’
kerkmix activation of the Kerker charge mixing ‘on’
verbose detailed diagonostic printout ‘on’

Table V. Parameters for SCF

By default, both the scf and dcm functions print out a list of diagnostic infor-
mation on the screen. For example, Figure 4 shows the standard output from the

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

22 · KSSOLV

scf function, which include eigenvalue approximations and residuals of the linear
eigenvalue problem computed at each LOBPCG iteration as well as the approxi-
mate total energy, the 2-norm of each column of (25), and the difference between
the input and output potentials computed at the end of each SCF iteration. These
intermediate output can be used to monitor the convergence of the algorithm.

[Etotvec, X, vtot, rho] = scf(mol);

initialization...

Beging SCF calculation...

LOBPCG iter = 1

eigval(1) = 7.195e+00, resnrm = 3.277e+00

eigval(2) = 7.368e+00, resnrm = 3.347e+00

eigval(3) = 7.551e+00, resnrm = 3.233e+00

eigval(4) = 7.703e+00, resnrm = 3.239e+00

LOBPCG iter = 2

eigval(1) = 5.097e-01, resnrm = 8.297e-01

eigval(2) = 6.200e-01, resnrm = 8.719e-01

eigval(3) = 6.912e-01, resnrm = 9.045e-01

eigval(4) = 9.038e-01, resnrm = 9.130e-01

...

SCF iter 1:

norm(vout-vin) = 5.807e+00

Total energy = -5.8719608972592e+00

resnrm = 1.857e-02

resnrm = 2.161e-02

resnrm = 2.161e-02

resnrm = 2.162e-02

...

Fig. 4. SCF output

5. ALGORITHM DEVELOPMENT UNDER KSSOLV

The use of an object-oriented design in KSSOLV simplifies the process of algorithm
prototyping so that new algorithms can be implemented, tested and compared
quickly. This is possible because many basic linear algebra operations can be applied
directly to Hamilt and Wavefun objects. To give an example, we will show how the
DCM algorithm can be easily translated into the MATLAB code shown in Figure 5.
We should point out that the code segment shown in Figure 5 is a simplified version
of the dcm.m file included in KSSOLV. The simplification is made to emphasize the
main features of algorithm and its implementation.

In this example, a Hamilt object H has been constructed during an initialization
step which is not shown here. A set of wavefunctions contained in a Wavefun

object X has been created also. The code segment contained in the while loop
constitutes a single DCM iteration. In this version of the DCM implementation, a
simple, iteration count based termination criterion is used, i.e., the DCM iteration
is terminated when the total number of DCM iterations reaches a user specified
parameter maxdcmiter.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 23

The first few lines of the codes within the while loop compute the preconditioned
and gradient of the Kohn-Sham total energy (projected onto the tangent of the
orthonormality constraint) with respect to the wave function X. They correspond
to Steps 3 and 4 in Figure 2. The preconditioner prec used here is constructed
using the techniques developed in [Teter et al. 1989]. In matrix notation, the
preconditioner defined in [Teter et al. 1989] is diagonal in the frequency space.
Thus it can be constructed as a Wavefun object, and the application of prec to
wavefunctions stored in R can be carried out using an overloaded element-wise
multiplication operation. The product is another Wavefun object.

We use the overloaded horizontal concatenation operator

Y = [X R];

if (iterdcm > 1) Y = [Y P]; end;

to construct the space spanned by wavefunctions contained in X, R and P. This
matches exactly with Step 5 in Figure 2.

The MATLAB code in Figure 5 illustrates how the Kohn-Sham Hamiltonian is
projected into the subspace spanned by wavefunctions contained in Y and how the
projected problem is solved in DCM. The kinetic and ionic potential component
of the Kohn-Sham Hamiltonian are projected outside of the inner SCF for loop
used to solve the projected problem defined in Step 7 of the DCM algorithm. The
function applyKIEP, which we do not show here, simply performs the operation
KY = (L+Vion)Y , where KY is represented as a Wavefun object. The overloaded
Wavefun multiplication operator makes the calculation T = Y ∗KY and B = Y ∗Y
extremely easy.

The projection of the Coulomb and exchange-correlation potential must be done
inside the inner SCF for loop because these nonlinear potentials change as eigenvec-
tors of the projected Hamiltonian Ĥ(G) defined in (32) are updated. The projection
is done by first computing V Y = [Diag(L†ρ)) + Diag(µxc(ρ))]Y using the function
applyNP (which we do not show here) and then performing a Wavefunc multi-
plication to obtain Y ∗V Y . The projected nonlinear potential is combined with
the T matrix computed outside of the for loop to form the projected Kohn-Sham
Hamiltonian A.

Because the dimensions of A and B are relatively small, we can compute all eigen-
values and the corresponding eigenvectors of the matrix pencil (A,B) in each inner
SCF iteration using MATLAB’s eig function. The returned eigenvalues and eigen-
vectors are sorted so that the leading nocc columns of G contain the eigenvectors
associated with the nocc smallest eigenvalues of (A,B). These eigenvectors are used
to update the wavefunctions X by multiplying Y with G(:,1:nocc) using the over-
load wavefunction multiplication operator. These calculations are followed by the
update of the charge density rho as well as the recalculation of the Coulomb and
exchange-correlation potentials and energies. The new nonlinear potential are then
used to update the Hamiltonian by calling the set function.

6. EXAMPLES

The KSSOLV toolbox includes a number of examples that users can experiment
with. Each example represents a particular molecule or bulk system. The system
is created in a setup file. Table VI shows the names of all setup files and a brief

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

24 · KSSOLV

while (iterdcm <= maxdcmiter)

HX = H*X;

T = X’*HX;

R = HX - X*T; % the gradient of the total energy

for j = 1:nocc

R(:,j)=prec.*R(:,j); % apply the preconditioner prec

end;

% construct the projection subspace

Y = [X R];

if (iterdcm > 1) Y = [Y P]; end;

ny = get(Y,’ncols’);

% project the kinetic and ionic potential part of the Hamiltonian into Y

KY = applyKIEP(H,Y); % KY = (L + Vion) Y

T = Y’*KY;

B = Y’*Y;

% solve the projected problem

G = eye(ny);

for iterscf = 1:maxscfiter

VY = applyNP(H,Y); % project the nonlinear potential part of the Hamiltonian

A = T + Y’*VY;

[G,D]=eig(A,B,’chol’);

X = Y*G(:,1:nocc);

rho = getcharge(mol,X,spintype);

% update the the Coulomb and exchange correlation potential

[vcoul,vxc,uxc2,rho]=getvhxc(mol,rho);

% recalculate kinetic, Coulomb and exchange-correlation and total energy

Ekin = (2/spintype)*trace(G(:,1:nocc)’*T*G(:,1:nocc));

Ecoul = getEcoul(mol,rho,vcoul);

Exc = getExc(mol,rho,uxc2);

Etot = Ewald + Ealphat + Ekin + Ecoul + Exc;

% Update the nonlinear potential only

H = set(H,’vnp’,vcoul+vxc);

end;

% update the total potential

vout = getvtot(mol, vion, vext, vcoul, vxc);

H = set(H,’vtot’,vout);

% save the current "search direction"

P = Y(:,nocc+1:ny)*G(nocc+1:ny,1:nocc);

iterdcm = iterdcm + 1;

end;

Fig. 5. DCM in KSSOLV

description for each of them. It also shows the number of occupied states (nocc)
which is simply the number of electron pairs for most systems (with the excep-
tion of the quantum dot example in which electrons are not paired by their spin
orientations). To create a new system, a user can simply take one of the existing
setup files and modify the construction of the Molecule object. KSSOLV provides
atomic information (e.g., the atomic shell configuration in terms of s, p, d orbitals
and the number of valence electrons etc.) and pseudopotentials associated with
most elements in the first four rows of the periodic table as well as a few com-
monly used elements in higher rows. It can be used to study electronic properties
of most small molecules (with up to a few hundred of valence electrons), insulators

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 25

and semiconductor materials. For metals, a finite temperature formulation of the
Kohn-Sham DFT model [Mermin 1965; Weinert and Davenport 1992; Wntzcovitch
et al. 1992], which has not been implemented in current version of KSSOLV, must
be used to generate physically meaningful results. We will add such a feature in
the near future. In general, to produce physically meaningful results, appropri-
ate supercell size and kinetic energy cutoff should be used. However, a user can
experiment with different choices of these parameters to examine changes in the
convergence properties of the numerical method or the quality of the computed
solution in KSSOLV.

setup file name nocc Description

c2h6 setup.m 7 an ethane molecule
co2 setup.m 8 a carbon dioxide molecule

h2o setup.m 4 a water molecule
hnco setup.m 8 an isocyanic acid molecule
qdot setup.m 8 an 8-electron quantum dot confined by external potential
si2h4 setup.m 6 a planar singlet silylene molecule
sibulk setup.m 6 a silicon bulk system
sih4 setup.m 4 a silane molecule
ptnio setup.m 43 a Pt2Ni6O molecule
pentacene setup.m 102 a pentacene (C22H16) molecule

Table VI. Setup files for examples included in KSSOLV

Table VII shows that running an example shown in Table VI typically takes
less than a minute on a Linux workstation, with the exception of the Pt2Ni6O
and pentacene examples which took more than a few minutes to complete 10 SCF
iterations. The timing results reported in the table were obtained on a single 2.2
GHz AMD Opteron processor. We used MATLAB Version 7.6.0.324 (R2008a) for
all experiments reported in this paper. The total amount of memory available on
the machine is 4 gigabytes (GB). A kinetic energy cutoff of 25 Ryd was used for
most systems. For a 10×10×10 (atomic units) cubic supercell, such a cutoff results
in a 32 × 32 × 32 sampling grid for the wavefunctions. For the Pt2Ni6O and the
pentacene systems, the use of supercells requires the grid sizes to be increased to
63×34×30 and 64×32×48 respectively. Moreover, because the number of electrons
in these systems are relatively large (nocc = 43 for Pt2Ni6O and nocc = 102 for
pentacene), these problems took more time to solve.

The same initial guesses to the wavefunctions were used for both the SCF and
DCM runs. All runs reported in the table used the default parameters in SCF
and DCM. For example, in the case of SCF, the maximum number of LOBPCG
iterations for solving each linear eigenvalue was set to 10. In the case of DCM,
three inner SCF iterations were performed to obtain an approximate solution to
(32).

The SCF and DCM errors reported in the last two columns of the table are the
residual norms defined as

error = ‖H(X)X −XΛ‖F ,

whereX contains the wavefunctions returned from SCF or DCM and Λ = X∗H(X)X .

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

26 · KSSOLV

Table VII shows that DCM is faster than SCF for almost all systems. With the
exception of the quantum dot example, it also produces more accurate results.

system SCF time DCM time SCF error DCM error

C2H6 26 25 9.4e-6 3.5e-6
CO2 26 23 3.1e-3 1.1e-4
H2O 16 16 5.7e-5 2.2e-5
HNCO 34 32 7.4e-3 6.8e-5
Quantum dot 18 16 5.0e-3 3.7e-1
Si2H4 25 23 1.8e-3 2.7e-4
silicon bulk 15 15 3.0e-4 9.6e-6
SiH4 20 19 9.7e-6 4.9e-7
Pt2Ni6O 415 281 3.7 4.9e-2
pentacene 887 493 5.2e-1 2.5e-2

Table VII. Comparing the timing and accuracy of running SCF and DCM in KSSOLV

We will now take a closer look at two specific examples that demonstrate how
KSSOLV can be used to solve the Kohn-Sham equations associated with different
types of systems and how the computed results can be examined, compared and
visualized in the MATLAB envrionment.

6.1 The Silane Molecule

The simplest example included in KSSOLV is perhaps the SiH4 (silane) example
described in the sih4 setup.m. The setup file contains the code snippets shown in
Figure 6. These codes are used to construct a Molecule object for a molecule that
consists of a silicon atom and four hydrogen atoms. The geometry configuration of
these atoms is shown in Figure 3.

The overloaded display function for the Molecule class in KSSOLV allows users
to see various attributes of the mol object by simply typing mol on the command
line (without a semicolon at the end). Figure 7 shows the typical information one
would see after typing mol on the command line.

The convergence behavior associated with different algorithms can be easily visu-
alized by plotting the history of total energy reduction Etotvec-Eminwhere Emin is
the minimum total energy computed by all methods. For example, Figure 8 shows
how the total energy changes at each SCF and DCM iteration. We can clearly see
from this figure that the reduction in total energy is more rapid in DCM than that
in SCF for the silane system. Under the MATLAB environment, a user can easily
modify the scf or dcm function to record and plot the change in total energy or
Kohn-Sham residual norm with respect to either CPU time or the number of matrix
vector multiplications performed. Similarly, we can compare the performance of the
same algorithm with different parameter settings quite easily also. Figure 9 shows
the use of charge mixing clearly accelerates the convergence of the SCF iteration.

For computational scientists, it is important to be able to examine the computed
solution visually so that they may gain new insights into physical properties of the
atomistic system under study. The MATLAB visualization capabilities make this
task extremely easy. In Figure 10, we show the isosurface rendering of the charge
density rho returned from the scf function. This figure is generated in MATLAB
by using the command

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 27

% 1. construct atoms

a1 = Atom(’Si’);

a2 = Atom(’H’);

alist = [a1; a2; a2; a2; a2];

% 2. set up supercell

C = 10*eye(3);

% 3. define the coordinates the atoms

coefs = [

0.0 0.0 0.0

0.161 0.161 0.161

-0.161 -0.161 0.161

0.161 -0.161 -0.161

-0.161 0.161 -0.161

];

xyzmat = coefs*C’;

% 4. Configure the molecule

mol = Molecule();

mol = set(mol,’supercell’,C);

mol = set(mol,’atomlist’,alist);

mol = set(mol,’xyzlist’ ,xyzmat);

mol = set(mol,’ecut’, 25); % kinetic energy cut off

mol = set(mol,’name’,’SiH4’);

Fig. 6. Setting up the Silane molecule

>> mol

Molecule: SiH4

supercell:

1.000e+01 0.000e+00 0.000e+00

0.000e+00 1.000e+01 0.000e+00

0.000e+00 0.000e+00 1.000e+01

sampling size: n1 = 32, n2 = 32, n3 = 32

atoms and coordinates:

1 Si 0.000e+00 0.000e+00 0.000e+00

2 H 1.610e+00 1.610e+00 1.610e+00

3 H -1.610e+00 -1.610e+00 1.610e+00

4 H 1.610e+00 -1.610e+00 -1.610e+00

5 H -1.610e+00 1.610e+00 -1.610e+00

number of electrons : 8

spin type : 1

kinetic energy cutoff: 2.500e+01

Fig. 7. Displaying the attributes of the Silane molecule

isosurface(rho);

6.2 Electron quantum dot confined by an external potential

In addition to molecules and bulk systems, KSSOLV can be used to study the
properties of quantum dots that consist of only electrons confined by an external
potential field. The setup file qdot setup.m which we list in Figure 11 shows
how such a system can be created. Notice that no atomic information is needed
in the setup file. Instead, we specify the number of electrons and set the spin

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

28 · KSSOLV

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
du

ct
io

n
in

 to
ta

l e
ne

rg
y

SCF
DCM

Fig. 8. Comparing the reduction of total energy in SCF and DCM for SiH4.

1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
du

ct
io

n
in

 to
ta

l e
ne

rg
y

SCF with charge mixing
SCF without charge mixing

Fig. 9. The effect of charge mixing in SCF.

type (spintype) to 2, which indicates that the wavefunction associated with each
electron is treated differently. The getVharmonic function used in the setup file
(which we do not show here) defines an external potential parameterized by a
parameter which is set to 1 in the setup file.

Figure 12 shows the attributes of the quantum dot when we type mol at the
MATLAB prompt. Notice that the atoms and coordinates attribute is set to
none. Figure 13 provides a partial listing of the output produced from running

[Etotvec, X, vtot, rho] = dcm(mol,’maxdcmiter’,50);

The output shows that the convergence of DCM algorithm appears to be slow for
this problem. In particular, the total energy changes very little from one DCM
iteration to another. In the last few DCM iterations, there is no discernable change
in total energy within the inner SCF iteration used to solve the projected problem.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 29

Fig. 10. The computed charge density of the SiH4 molecule.

% 1. set up supercell

C = 10*eye(3);

% 2. Configure the molecule (crystal)

mol = Molecule();

mol = set(mol,’supercell’,C);

mol = set(mol,’ecut’, 25); % kinetic energy cut off

mol = set(mol,’name’,’Quantum dot’);

% 3. construct external potential

vext = getVharmonic(mol,1);

mol = set(mol,’vext’, vext);

% 4. set the number of electrons

mol = set(mol,’nel’,4);

mol = set(mol,’spintype’,2);

Fig. 11. Setting up a four-electron quantum dot

>> mol

Molecule: Quantum dot

supercell:

1.000e+01 0.000e+00 0.000e+00

0.000e+00 1.000e+01 0.000e+00

0.000e+00 0.000e+00 1.000e+01

sampling size: n1 = 32, n2 = 32, n3 = 32

atoms and coordinates: none

number of electrons : 4

spin type : 2

kinetic energy cutoff: 2.500e+01

Fig. 12. Attributes of a four-electron quantum dot

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

30 · KSSOLV

For this problem, the SCF iteration appears to be more effective as we have already
seen from Table VII.

Begin DCM calculation...

iterdcm = 1

resnrm = 5.439e-01

resnrm = 8.750e-01

resnrm = 1.075e+00

resnrm = 1.173e+00

inner_scf = 1, Etot = 1.0467219866980e+01

inner_scf = 2, Etot = 1.0466951470435e+01

inner_scf = 3, Etot = 1.0466951470413e+01

iterdcm = 2

resnrm = 4.107e-01

resnrm = 6.688e-01

resnrm = 8.163e-01

resnrm = 9.329e-01

inner_scf = 1, Etot = 1.0364915402274e+01

inner_scf = 2, Etot = 1.0364915284577e+01

inner_scf = 3, Etot = 1.0364915284577e+01

...

iterdcm = 49

resnrm = 1.752e-05

resnrm = 4.961e-05

resnrm = 5.023e-05

resnrm = 9.748e-05

inner_scf = 1, Etot = 1.0133540758574e+01

inner_scf = 2, Etot = 1.0133540758574e+01

inner_scf = 3, Etot = 1.0133540758574e+01

iterdcm = 50

resnrm = 1.611e-05

resnrm = 3.769e-05

resnrm = 4.725e-05

resnrm = 8.170e-05

inner_scf = 1, Etot = 1.0133540758308e+01

inner_scf = 2, Etot = 1.0133540758308e+01

inner_scf = 3, Etot = 1.0133540758308e+01

Fig. 13. Output from applying DCM to a four-electron quantum dot

7. CONCLUSIONS

We have described the design and implementation of KSSOLV, a MATLAB toolbox
for solving the Kohn-Sham equations. Planewave discretization is used in KSSOLV
because of its variational properties and simplicity. It is the natural choice for
building a MATLAB Kohn-Sham equation solver because discrete Fourier trans-
forms can be computed efficiently in MATLAB by its optimized FFT functions. The
standard pseudopotential technique is utilized in KSSOLV to reduce the number

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 31

of electron wavefunctions to be computed and the number of planewave basis func-
tions required to represent each wavefunction. We should point out that planewave
discretization does have some drawbacks [Kronik et al. 2006]. In particular, for
molecules, the size of the fictitious supercell has to be large enough so that the
computed wavefunctions do not overlap near the edge of the cell. However, these
issues are not critical if one simply intends to study the existing algorithms or
develop new algorithms for solving finite-dimensional Kohn-Sham equations.

One of the main features of the toolbox is the object-oriented design that allows
users to easily set up a physical atomistic system. Physical attributes of the system
are translated into numerical objects such as wavefunctions and Hamiltonians in
a transparent fashion. These objects can be easily manipulated using overloaded
algebraic operations. As a result, the coding effort required to investigate properties
of the existing algorithms and to develop new algorithms for solving the Kohn-Sham
equations is reduced significantly in KSSOLV. Furthermore, the visualization tools
available in MATLAB enable users to quickly examine the computed results and
compare the performance of different algorithms.

Some computational efficiency is sacrificed in KSSOLV to keep the object-oriented
interface simple. To reduce the number of loops, which are slow in MATLAB, and
replace them with vectorized operations (operations that can be applied simulta-
neously to all elements of an array), additional arrays are sometimes allocated to
speed up the calculation. The presence of these arrays tends to increase the amount
of memory usage. A number of improvements are being made to further reduce the
memory and execution time required to construct and manipulate a Kohn-Sham
Hamiltonian and electron wavefunctions. Alternative algorithms such as the Grass-
man manifold constrained total energy minimization scheme [Edelman et al. 1998]
and the energy DIIS (EDIIS) algorithm [Kudin et al. 2006] will also be included in
KSSOLV in future releases of the toolbox.

Because no parallelization has been implemented in the current version of KS-
SOLV, the size of the atomistic system one can study is rather limited. Nonethe-
less, many computational experiments can already be performed on the examples
included in the package using the KSSOLV implementations of the SCF and DCM
algorithms. We believe a great deal can be learned from running the existing codes
on these examples.

Finally, because the atomic coordinates associated with each Molecule object can
be easily modified in KSSOLV, the package can be easily extended in the future to
facilitate structure relaxation (i.e. minimize the total energy with respect to both
the atomic positions and single-particle wavefunctions) and ab initio molecular
dynamics.

REFERENCES

Andreoni, W. and Curioni, A. 2000. New advances in chemistry and material science with
CPMD and parallel computing. Parallel Computing 26, 819–842.

Arias, T. A., Payne, M. C., and Joannopoulos, J. D. 1992. Ab initio molecular dynamics: An-
alytically continued energ functionals and insights into iterative solutions. Phys. Rev. Lett. 69,
1077–1080.

Ashcroft, N. W. and Mermin, N. D. 1976. Solid State Physics. Brooks Cole, Pacific Grove,
CA.

Baroni, S., Corso, A. D., de Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G.,

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

32 · KSSOLV

Scandolo, S., Chiarotti, G., Focher, P., Pasquarello, A., Laasonen, K., Trave, A.,

Car, R., Marzari, N., and Kokalj, A. 2006. PWscf. http://www.pwscf.org/.

Bekas, C., Kokiopoulou, E., and Saad, Y. 2005. Polynomial filtered lanczos iterations with
applications in Density Functional Theory. SIAM J. Matrix Anal. Appl. 30, 1, 397–418.

Bloch, F. 1928. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52,
555–600.

Cancès, E. 2001. Self-consistent field algorithms for Kohn-Sham models with fractional occupa-
tion numbers. J. Chem. Phys. 114, 10616–10622.

Cancès, E. and Le Bris, C. 2000a. Can we outperform the DIIS approach for electronic structure
calculations? International Journal of Quantum Chemistry 79, 82–90.

Cancès, E. and Le Bris, C. 2000b. On the convergence of SCF algorithm for the Hartree-Fock
equations. Math. Models. Numer. Anal. 34, 749–7774.

Davis, P. J. 1979. Circulant Matrices. Wiley, New York.

Demmel, J. W. 1997. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA.

Edelman, A., Arias, T. A., and Smith, S. T. 1998. The geometry of algorithms with orthogo-
nality constraints. SIAM J. Matrix Anal. Appl. 20, 2, 303–353.

Ewald, P. P. 1921. Die Berchnung optischer und elektrostatischer Gitterpotentiale. Ann.

Phys. 64, 253–287.

Gillan, M. J. 1989. Calculation of the vacancy formation in aluminum. J. Phys. Condens.

Matter 1, 689–711.

Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations, Third ed. Johns Hopkins,
Philadelphia, PA.

Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic,

L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez,

P., Raty, J.-Y., and Allan, D. 2002. First-principles computation of material properties : the
ABINIT software project. Computational Materials Science 25, 478–492.

Hohenberg, P. and Kohn, W. 1964. Inhomogeneous electron gas. Phys. Rev. B 136, 3B,
B864–B871.

Ihm, J., Zunger, A., and Cohen, M. L. 1979. Momentum-space formalism for the total energy
of solids. J. Phys. C: Solid State Physics 12, 4409–4422.

Kerker, G. P. 1981. Efficient iteration scheme for self-consistent pseudopotential calculations.
Phys Rev. B 23, 3082–3084.

Kleinman, L. and Bylander, D. M. 1982. Efficacious form for model pseudopotentials. Phys.

Rev. Lett. 48, 1425.

Knyazev, A. 2001. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM J. Sci. Comput. 22, 2, 517–541.

Kohn, W. and Sham, L. J. 1965. Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, 4A, A1133–A11388.

Kresse, G. and Furthmüller, J. 1996. Efficiency of ab initio total energy calculations for metals
and semiconductors using a plane-wave basis set. Computational Materials Science 6, 15–50.

Kresse, G. and Furthmüller, J. 1996. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phy. Rev. B 54, 11169–11186.

Kronik, L., Makmal, A., Tiago, M. L., Alemany, M. M. G., Jain, M., Huang, X., Saad,

Y., and Chelikowsky, J. R. 2006. PARSEC - the pseudopotential algorithm for real-space
electronic structure calculations: Recent advances and novel applications to nano-structures.
Phys. Stat. Sol. 5, 1063–1079.

Kudin, K. N., Scuseria, G. E., and Cances, E. 2006. A black-box self-consistent field conver-
gence algorithm: One step closer. J. Chem. Phys. 116, 19, 8255–8261.

Le Bris, C. 2005. Computational chemistry from the perspective of numerical analysis. Acta

Numerica 14, 363–444.

Mermin, N. D. 1965. Thermal properties of the inhomogeneous gas. Phys. Rev. A 137, 1441–1443.

Nogueira, F., Castro, A., and Marques, M. 2003. A Primer in Density Functional Theory.
Springer, Berlin, Chapter A Tutorial on Density Functional Theory, 218–256.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

KSSOLV · 33

Nyquist, H. 1928. Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644.

Payne, M. C., Teter, M. P., Allen, D. C., Arias, T. A., and Joannopoulos, J. D. 1992.
Iterative minimization techniques for ab initio total energy calculation: Molecular dynamics
and conjugate gradients. Reviews of Modern Physics 64, 4, 1045–1097.

Perdew, J. P. and Wang, Y. 1992. Accurate and simple analytic representation of the electron-
gas correlation energy. Phys. Rev. B 45, 13244–13249.

Perdew, J. P. and Zunger, A. 1981. Self-interaction correction to density-functional approxi-
mation for many-electron systems. Phys. Rev. B 23, 5048–5079.

Phillips, J. C. 1958. Energy-band interpolation scheme based on a pseudopotential. Phys.

Rev. 112, 3, 685–695.

Phillips, J. C. and Kleinman, L. 1958. New method for calculating wave functions in crystals
and molecules. Phys. Rev. 116, 2, 287–294.

Pickett, W. E. 1989. Pseudopotential methods in condensed matter applications. Computer

Physics Report 9, 115–197.

Pulay, P. 1980. Convergence acceleration of iterative sequences: The case of SCF iteration.
Chemical Physics Letters 73, 2, 393–398.

Pulay, P. 1982. Improved SCF convergence acceleration. Journal of Computational Chem-

istry 3, 4, 556–560.

Raczkowski, D., Canning, A., and Wang, L. W. 2001. Thomas-Fermi charge mixing for ob-
taining self-consistency in density functional calculations. Physical Review B 64, 121101–1–4.

Ritz, W. 1908. Ueber eine neue methode zur lösung gewisser variationsproblem der mathema-
tischen physik. J. Reine Angew. Math 135, 1–61.

Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., Gilbert,

A. T., Slipchenko, L. V., Levchenko, S. V., ONeill, D. P., Jr, R. A. D., Lochan, R. C.,
Wang, T., Beran, G. J., Besley, N. A., Herbert, J. M., Lin, C. Y., Voorhis, T. V.,
Chien, S. H., Sodt, A., Steele, R. P., Rassolov, V. A., Maslen, P. E., Korambath, P. P.,
Adamson, R. D., Austin, B., Baker, J., Byrd, E. F. C., Dachsel, H., Doerksen, R. J.,
Dreuw, A., Dunietz, B. D., Dutoi, A. D., Furlani, T. R., Gwaltney, S. R., Heyden, A.,
Hirata, S., Hsu, C.-P., Kedziora, G., Khalliulin, R. Z., Klunzinger, P., Lee, A. M., Lee,

M. S., Liang, W. Z., Lotan, T., Nair, N., Peters, B., Proynov, E. I., Pieniazek, P. A.,
Rhee, Y. M., Ritchie, J., Rosta, E., Sherrill, C. D., Simmonett, A. C., Subotnik, J. E.,
III, H. L. W., Zhang, W., Bell, A. T., Chakraborty, A. K., Chipman, D. M., Keil, F. J.,
Warshel, A., Hehre, W. J., III, H. F. S., Kong, J., Krylov, A. I., Gill, P. M. W., and

Head-Gordon, M. 2006. Advances in methods and algorithms in a modern quantum chemistry
program package. Phys. Chem. Chem. Phys. 8, 3172–3191.

Teter, M. P., Payne, M. C., and Allan, D. C. 1989. Solution of Schrödinger’s equation for
large systems. Physical Review B 40, 18, 12255–12263.

Trefethen, L. N. and Bau III, D. 1997. Numerical Linear Algebra. Siam, Philadelphia, PA.

Troullier, N. and Martins, J. L. 1991. Efficient pseudopotentials for plane-wave calculations.
Phys. Rev. B 43, 1993–2005.

Van Loan, C. 1987. Computational Frameworks for the Fast Fourier Transform. SIAM, Philadel-
phia, PA.

VandeVondele, J. and Hutter, J. 2003. An efficient orbital transformation method for elec-
tronic structure calculations. Journal of Chem. Phys. 118, 4365–4369.

Voorhis, T. V. and Head-Gordon, M. 2002. A geometric approach to direct minimization.

Molecular Physics 100, 11, 1713–1721.

Wang, L. 2008. PETOT. http://hpcrd.lbl.gov/ linwang/PEtot/PEtot.htm.

Weinert, M. and Davenport, J. W. 1992. Fractional occupations and density-functional energies
and forces. Phys. Rev. B 45, 13709–13712.

Wntzcovitch, R. M., Martins, J. L., and Allen, P. B. 1992. Energy versus free-energy in
first-principles molecular dynamics. Phys. Rev. B 45, 11372–11374.

Yang, C. 2007. KSSOLV User’s Guide. Tech. Rep. LBNL-63661, Lawrence Berkeley National
Laboratory.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

34 · KSSOLV

Yang, C., Meza, J. C., and Wang, L. W. 2005. A constrained optimization algorithm for total

energy minimization in electronic structure calculation. Journal of Computational Physics 217,
709–721.

Yang, C., Meza, J. C., and Wang, L. W. 2007. A trust region direct constrained minimization
algorithm for the Kohn-Sham equation. SIAM J. Sci. Comp. 29, 5, 1854–1875.

Yin, M. T. and Cohen, M. L. 1982. Theory of ab initio pseudopotential calculations. Phys. Rev.

B 25, 12, 7403–7412.

Zhou, Y., Saad, Y., Tiago, M. L., and Chelikowsky, J. R. 2006. Self-consistent field calcula-
tions using Chebyshev-filtered subspace iteration. J. of Comp. Phys. 219, 172–184.

...

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

